Robust nonlinear control of a 7 DOF model - scale helicopter under wind gusts using disturbance observers
نویسنده
چکیده
Nowadays, high levels of agility, maneuverability and capability of operating in reduced visual environments and adverse weather conditions are the new trends of helicopter design. Helicopter flight control systems should make these performance requirements achievable by improving tracking performance and disturbance rejection capability. Robustness is one of the critical issues which must be considered in the control system design for such highperformance autonomous helicopter, since any mathematical helicopter model, especially those covering large flight domains, will unavoidably have uncertainty due to the empirical representation of aerodynamic forces and moments. Recently the control problems of unmanned scale helicopter have been attracted extensively attention of control researchers. As the helicopter can hover, it is used to implement many important flight missions such as rescue, surveillance, security operation, traffic monitoring, etc. However, helicopter, which is difficult to hover, is more complicated than other familiar control objects. Helicopter is dynamic unstable when it flights in hover mode at nearly zero forward speed. Moreover, the helicopter is open-loop unstable and most mathematical model contain a moderate-high degree of uncertainty models associated with neglected dynamics and poorly understood aeromechanical couplings. Therefore, it is very important to design a stable controller for unmanned helicopter. Many previous works focus on (linear and nonlinear, robust, ...) control (Beji and Abichou, 2005) (Frazzoli et al., 2000) (Koo and Sastry, 1998), including a particular attention on the analysis of the stability (Mahony and Hamel, 2004), but very few works have been made on the influence of wind gusts acting on the flying system, whereas it is a crucial problem for out-door applications, especially in urban environment : as a matter of fact, if the autonomous flying system (especially when this system is relatively slight) crosses a crossroads, it can be disturbed by wind gusts and leave its trajectory, which could be critical in a highly dense urban context. In (Martini et al., 2008), thw controllers (an approximate feedback control AFLC and approximate disturbance observer AADRC) are designed for a nonlinear model of a 7 DOF helicopter using in its approximate minimum phase model. In (Pflimlin et al., 2004), a 3
منابع مشابه
Control of Quadrotor Using Sliding Mode Disturbance Observer and Nonlinear Hâ
In this paper, a nonlinear model of the underactuated six degrees of freedom (6 DOF) quadrotor helicopter was derived based on the Newton-Euler formalism. A new nonlinear robust control strategy was proposed to solve the stabilizing and path following problems in presence of external disturbances and parametric uncertainties. The proposed control structure consist of a sliding mode control base...
متن کاملIntelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملRobust Backstepping Controller for Inner and Outer Loops Control of a Small-Scale Helicopter
This paper presents an investigation into the design of a flight control system, using a robust backstepping control structure, designed using the two-time scale control procedure of the dynamic of a small-size autonomous helicopter in hover. The two-time scale controller takes advantage of the ‘decoupling’ of the translational and rotational dynamics of the rigid body, resulting in a two-level...
متن کاملPosition Control of an Unmanned Autonomous Helicopter Using Robust Backstepping
In this paper, a robust control strategy applied on a small helicopter is proposed. An approximate small-scale helicopter model with decoupled dynamics is adopted for the controller design which uses the backstepping method based on the Lyapunov function. The Lyapunov function is used to show the robustness of the proposed control method under conditions of wind gusts. Finally simulation result...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کامل